
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1972

Factors affecting peroxide types in oxidizing fatty
acid mixtures
Donald Craig Johnson
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Agriculture Commons, and the Food Science Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Johnson, Donald Craig, "Factors affecting peroxide types in oxidizing fatty acid mixtures " (1972). Retrospective Theses and
Dissertations. 5212.
https://lib.dr.iastate.edu/rtd/5212

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F5212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F5212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F5212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F5212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F5212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F5212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=lib.dr.iastate.edu%2Frtd%2F5212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/84?utm_source=lib.dr.iastate.edu%2Frtd%2F5212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/5212?utm_source=lib.dr.iastate.edu%2Frtd%2F5212&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This dissertation was produced from a microti I rn copy of the original document. 
While the most advanced technological means to photograph and reproduce this 
document have been used, the quality is heavily dependent upon the quality of 
the original submitted. 

The following explanation of techniques is provided to help you understand 
markings or patterns which may appear on this reproduction. 

1. The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the 
missing page(s) or section, they are spliced into the film along with 
adjacent pages. This may have necessitated cutting thru an image and 
duplicating adjacent pages to insure you complete continuity. 

2. When an image on the film is obliterated with a large round black 
mark, it is an indication that the photographer suspected that the 
copy may have moved during exposure and thus cause a blurred 
image. You will find a good image of the page in the adjacent frame. 

3. When a map, drawing or chart, etc., was part of the material being 
photographed the photographer followed a definite method in 
"sectioning" the material. It is customary to begin photoing at the 
upper left hand corner of a large sheet and to continue photoing from 
left to right in equal sections with a small overlap. If necessary, 
sectioning is continued again - beginning below the first row and 
continuing on until complete, 

4. The majority of users indicate that the textual content is of greatest 
value, however, a somewhat higher quality reproduction could be 
made from "photographs" if essential to the understanding of the 
dissertation. Silver prints of "photographs" may be ordered at 
additional charge by writing the Order Department, giving the catalog 
number, title, author and specific pages you wish reproduced. 

University Microfilms 
300 North Zeeb Road 
Ann Arbor, Michigan 48106 

A Xerox Education Company 



www.manaraa.com

ù' 

I 

72-19,986 

JOHNSON, Donald Craig, 1944-
FACTORS AFFECTING PEROXIDE TYPES IN OXIDIZING 
FATTY ACID MIXTURES. 

Iowa State Ifeiversity, Ph.D., 1972 
Food Technology 

j University Microfilms, A XERQKCompany, Ann Arbor, Michigan 

THTS TiTSRT-RTATTDN HAS RF.F.N MTCROFILMED EXACTLY AS RECEIVED. 



www.manaraa.com

Factors affecting peroxide types 

in oxidizing fatty acid mixtures 

by 

Donald Craig Johnson 

A Dissertation Submitted to the 

Graduate Faculty in Partial Fulfillment of 

The Requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Major Subject; Food Technology 

Approved ; 

In Charge of Major Work 

For the Major Department 

For the Graduate College 

Iowa State University 
Ames, Iowa 

1972 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

PLEASE NOTE; 

Some pages may have 

indistinct print. 

Filmed as received. 

University Microfilms, A Xerox Education Company 



www.manaraa.com

ii 

TABLE OF CONTENTS 

Page 

INTRODUCTION 1 

REVIEW OF LITERATURE 2 

EXPERIMENTAL INVESTIGATION 12 

RESULTS AND DISCUSSION 19 

SUMMARY 54 

LITERATURE CITED 57 

ACKNOWLEDGMENTS 63 



www.manaraa.com

1 

INTRODUCTION 

The peroxide value test (43) has been used for many years to 

determine the stability and suitability of fats and oils. The test 

shows the total amount of peroxide present which oxidizes potassium 

iodide. But, in a fat or oil in which several unsaturated fatty acids 

are capable of forming peroxides, the peroxide test is incapable of 

showing the amount of each individual peroxide. 

People frequently assume that fatty acids in mixtures will oxi­

dize according to the relative rates of the pure individual fatty acid. 

But earlier work in this laboratory on natural oils (50) showed that 

individual peroxides present were not in the ratio those which would 

be expected from fatty acids being oxidized separately. 

This work was undertaken to clarify the interaction among fatty 

acids, the effect of triglyceride structure, and/or other factors which 

influence the formation of individual peroxides in fatty acid mixtures. 
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REVIEW OF LITERATURE 

Research has been carried out on the autoxidation of lipids for 

over one hundred years. Until 1940, the research was of limited value 

because it was mainly carried out on natural fatty materials, which are 

very complex. Therefore, it was impossible to understand the mechanisms 

of the numerous reactions occurring simultaneously (64). 

The early researchers believed the autoxidation of unsaturated 

fatty materials proceeded by direct addition of oxygen to the double 

bond, thus forming a cyclic peroxide. By studying the oxidation of 

simple, monounsaturated, nonfatty compounds, such as cyclohexene, in­

formation pertaining to the oxidation of monounsaturated lipid compounds 

was obtained. In 1928, Stephens (60) reported the isolation of a per­

oxide of cyclohexene. On the basis of the then accepted theories, he 

assumed that the product was saturated. Farmer and Sundralingam (16) 

established that Stephens' product was a hydroperoxide and that a double 

bond was present. They also found similar results with other compounds. 

The isolation of unsaturated hydroperoxides from oxidized olefins cast 

considerable doubt on the earlier concepts of autoxidation. 

An extension of this work, mainly by Farmer's group (12, 13, 14, 

15, 16, 17, 18, 19, 20) at the British Rubber Producers' Research Asso­

ciation proved that autoxidation usually proceeded through an attack at 

the methylene group adjacent to the double bond leading to the formation 

of allylic hydroperoxides: 
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02 
- CH2 - CH = CH - > - CH - CH = CH -

OOH 

According to Farmer's theory of autoxldatlon of all nonconjugated 

oleflnlc compounds, the addition of oxygen Is by a free radical chain 

reaction on the carbon adjacent to the double bond. 

There are three elementary reactions involved in the autoxldatlon 

of unsaturated fatty acids. These are initiation, propagation, and 

termination: 

Initiation; Formation of free radicals 
RH ^ R-
ROOH > R- (1) 

Propagation: Chain reaction 

R. + 02 > ROO- (2) 
ROO* + RH > ROOH + R* (3) 

Termination: -

2R- I (4) 
R* + ROO"/ —^ nonradical products (5) 

2R00- J (6) 

where RH represents an olefin with a OL methylene hydrogen, R* is an 

alkyl free radical, and R02* is a peroxy free radical. The radical R* 

is the result of abstraction of a hydrogen from the fatty acid. The 

abstraction of hydrogen in reaction (3) occurs more readily if the radi­

cal (R*) is stablized by resonance. Due to the activation of the 0! meth­

ylene hydrogen by a double bond, unsaturated fatty acids oxidize to a 

greater extent than saturated fatty acids. In fatty acids where the 

allylic radical is formed, the hydroperoxide produced may differ in 

structure from its parent hydrocarbon. 

The kinetics of olefin oxidation have been reviewed by Bateman (2), 
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Bolland (7), and more recently by Betts (5). 

In typical fatty acid oxidation, the propagation sequence may 

occur a hundred or more times for every act of initiation or termina­

tion. The rate of oxygen consumption, therefore, equals the rate of 

propagation. If the rate constants for reactions (2) and (3) are 

k-Q and kp, respectively; 

dCOg) ^ d(ROOH) ^ kg (R-) (Og) ^ kp (ROO.) (RH) 

dt dt 

The concentration of the alkylperoxyl radicals is minute, and its rate 

of change is near zero. If oxygen is not limiting, reaction (6) is the 

only important termination reaction. Applying stationary state princi­

ples; if the rate of initiation is Rj^ and the rate constant of reaction 

(6) is 2 k^; 

d(R00O = 0 = Ri - 2kt(R00-)^ 

dt 

hence eliminating (ROO*) and giving a general rate equation: 

- = kp(RH) (Ri/2kt)^ 
dt dt 

Under normal conditions, oxygen consumption and hydroperoxide yield 

agree closely (28, 39). 

Oxygen consumption by fatty acids has been measured by many re­

searchers (24, 31, 46, 61). Myers et al. (46) and Holman and Otto (31) 

found the acids to oxidize faster than the methyl esters. The energy 

required for the rupture of a carbon-hydrogen bond on the methylene 

group a to a double bond is believed to be considerably lower in a 1,4 
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diene system than in a monoene because the resonance energy of the 

pentadienyl radical is much higher, so the rate of autoxidation of 

linoleic is considerably faster than that of oleic acid. The rate 

of linolenic autoxidation is again faster than that of linoleic acid. 

Gunstone and Hilditch (24) and Holman and Otto (31) found rates of 

oxygen uptake of oleate; linoleate: linolenate of 1:10-12:25. The 

reliability of experiments on the rate of autoxidation of unsaturated 

fatty acids and esters is strongly dependent on the purity of the sub­

strates used. Gunstone and Hilditch (23) have shown that the autoxida­

tion of methyl oleate is strongly accelerated and the induction period 

much reduced in the presence of 1% methyl linoleate at 20C or 0.2% 

methyl linoleate at 500. 

Howard and Ingold (32), using a rotating sector apparatus, found 

the ratio of absolute rate constants (kp) for oleate: linoleate: lin­

olenate of 89:2100:3900. These authors did note that during oxidation 

the rates of oxygen uptake for linoleate and especially linolenate de­

creased with extent of oxidation even though was constant. This may 

cause some error in kp. 

If two hydrocarbons, R^H and R^H are co-oxidized, four propaga­

tions must be considered (55). These are: 

R^OD- + R^H — rIqdh + R1. 

R^GQ. + R^H — r^ooh + r2-

R^CQ. + R^H — -> R^OOH + r2-

R^OO. + R^H — —^ R^OOH + R^-
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As derived by Russell (55), the relative rate equation is: 

d(R^H) ^ d(R^OOH) ^ riCR^H/R^H) + 1 

dCR^H) dCR^OOH rgCR^H/R^) + 1 

where r-i = k 11/k 22 
i p p 

r2 = kp22/kp 21 

There have been no co-oxidation studies of fatty acids. 

Although kinetic studies have been helpful, much of the present 

understanding of autoxidation mechanisms has come from a knowledge of 

the structures of the hydroperoxides formed during autoxidation. The 

primary objective in the characterization of fatty ester hydroperoxides 

is to establish the position of the hydroperoxide group and the 

unsaturation within the fatty acid chain. Because of the interfer­

ence from and the instability of the hydroperoxide group, the reduc­

tion of the hydroperoxide group to the corresponding secondary 

alcohol is a fundamental step in the characterization of the fat 

hydroperoxide. 

The reduction of peroxides has been investigated by many workers, 

(36, 50, 53). Potassium iodide, stannous chloride, sodium bisulfite 

and sodium borohydride have been most commonly used for this purpose. 

Many forms of the iodometric reduction used by early workers were 

only qualitative, but some attempted to determine the iodine liberated. 

Lea (37) developed a method which involved heating the fat or oil with 

glacial acetic acid and chloroform in the presence of potassium iodide 

solution and titrating the liberated iodine with thiosulfate. Wheeler's 
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(67) procedure, which is used by the American Oil Chemists' Society, 

uses a saturated solution of potassium iodide and is performed in the 

presence of air at room temperature. 

Stannous chloride was used to determine peroxides quantitatively 

(53). Hargrave and Morris (28) found yields ranging from 42-100% with 

stannous chloride. With sodium bisulfite. Knight and Swern (36) re­

ported that some carbonyl groups were formed in the reduction of per­

oxides. Sodium borohydride was used to reduce llnoleate hydroperoxides, 

yielding alcohols free of carbonyls (58). Lea (38) compared the iodo-

metric, ferric thiocyanate (30), and 2,6-dichlorophenolindophenol (29) 

methods. He found yields of 71-91% for the iodometric method, but the 

yields in the other two methods were abnormally high in air, and ob­

viously too low in its absence. Raghuveer (50) found only 60-80% of 

the theoretical amount of reduced hydroperoxide using stannous chloride 

and sodium borohydride, while he found essentially complete reduction 

with potassium iodide. 

In the monounsaturated fatty acids, there are usually twoQ! meth­

ylene groups which are the points of attack in the free radical chain re­

action. Due to the stabilization by resonance, there is the possibility 

of the formation of four isomeric hydroperoxides. 

In an extension of their earlier work on low molecular weight 

olefins. Farmer and Sutton (17) isolated nearly pure methyl oleate hydro­

peroxides by molecular distillation and chromatography. The isolated 

hydroperoxides contained the theoretical amount of peroxide oxygen. Ox­

idized methyl elaidate also yielded a hydroperoxide (62). 
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The first structural characterization of oleate hydroperoxides was 

carried out by Ross et al. (54). They found the isomers in decreasing 

amounts of methyl 9-hydroperoxido-lO-octadecenoate, methyl-lO-hydroper-

oxido-8-octadecenoate, methyl-8-hydroperoxido-9-octadecenoate, and 

methyl-9-hydroperoxido-lO-octadecenoate. Knight et al. (35) and Swern 

et al. (63) found that autoxidation of methyl oleate induces a cis-trans 

isomerization of the double bond yielding the more stable trans hydroper­

oxides. In 1959, Privett and Nickell (48) showed that all four hydro­

peroxide isomers predicted by theory were formed in equal amounts. 

Farmer and Sutton (17) showed that methyl oleate on autoxidation 

yielded a mixture of mono- and dihydroperoxides, the monohydroperoxide 

predominating. Swern et al. (63) examined several peroxide concen­

trates of methyl oleate; by using polarographic methods, they found the 

monohydroperoxides predominate, but as much as 28% of the peroxides 

were nonhydroperoxides. By following absorption of oxygen quantita­

tively and analyzing the peroxides formed, Saunders et al. (56) found 

only 90-95% of the peroxides could be accounted for as hydroperoxides. 

In linoleic acid, there are three a methylene groups. The 

methylene group is the preferential point of attack, supposedly be­

cause the intermediate formation of a radical requires less energy 

than either the Gg or methylene group. The formation of three 

isomeric hydroperoxides would therefore be expected. 

Farmer and Sutton (18) observed that conjugation of double bonds 

occurred in autoxidized fish oil. Bolland and Koch (8) estimated that 

70% of the monhydroxide formed during autoxidation of ethyl linoleate 
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was conjugated dlene Isomers. Questions, as to whether three isomers 

(2 conjugated, 1 nonconjugated) or two conjugated isomers were formed, 

were answered by Bergstrom (4). He Isolated the hydrogenated products 

from autoxldlzed llnoleate and showed they contained 9- and 13-hydroxy-

stearates. Khan et al. (33) autoxidized methyl llnoleate under various 

conditions and found the hydroperoxides were composed of conjugated 

dlenes. 

The preponderance of conjugated hydroperoxides in autoxidized 

llnoleate was well established by the studies of Gannon et al. (10) 

and Privett et al. (47), who isolated the hydroperoxides in high purity 

by countercurrent distribution. Infrared spectra showed that the hydro­

peroxides assumed a cis-trans and trans-trans configuration, the more 

stable trans-trans isomer being more prevalent at higher temperatures 

and levels of autoxidation. Both groups estimated that more than 90% 

of the isomers were conjugated. Sephton and Sutton (58) confirmed these 

results. Upon hydrogénation of the hydroxyllnoleate isomers, they found 

equal amounts of the 9- and 13-hydroxystearates. They also reported the 

possible presence of cis-cls isomers. Banks et al. (1) using permanga­

nate oxidation, agreed with the findings of Sephton and Sutton (58). 

Khan et al. (34) reported a nonconjugated hydroperoxide when llnole­

ate was autoxidized in the presence of chlorophyll. Cobern et al. (11) 

and Hall and Roberts (25) examined oxidized llnoleate by mass spectro­

scopic and nuclear magnetic resonance techniques, respectively. Both 

groups found nonconjugated dlenes present when the llnoleate was oxi­

dized in the presence of chlorophyll. Both groups also concluded that 
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autoxldation Is invariably accompanied by double bond rearrangement and 

that for air oxidation (not catalyzed by chlorophyll) the rearrange­

ment is always in the direction of conjugation. 

The autoxldation of llnolenic acid proceeds in a similar manner 

to that of linoleic acid. There are two methylene groups between double 

bonds, which are the point of attack in the free radical chain reaction. 

The formation of at least six isomeric monohydroperoxides can therefore 

be expected. 

Fugger et al. (21) were unable to Isolate monohydroperoxides from 

autoxldlzed methyl llnolenate fractionated with a small countercurrent 

distribution apparatus. They concluded extensive polymerization oc­

curred even under mild conditions of autoxldation. Prlvett et al. (49), 

also using countercurrent extraction, showed that methyl llnolenate 

yielded a hydroperoxide containing 60% monomeric cis-trans conjugated 

diene monohydroperoxide. Prlvett et al. (49) and Frankel et al. (20) 

showed the hydroperoxides are conjugated dienes consisting primarily of 

els-trans with some trans-trans configuration. Begemann et al. (3) 

isolated methyl llnolenate monohydroperoxide and more polar peroxides. 

They identified four isomeric polar compounds containing two peroxide 

groups; a hydroperoxide group and a six membered ring peroxide. They 

proposed a mechanism for the formation of these compounds. 

Raghuveer (50) developed a quantitative method to Isolate and ana­

lyze peroxides from mixtures of fatty acids or natural oils. In soybean 

and olive oil, he found that the fatty acids oxidized at different rates 

than the data of pure methyl esters predicted. 
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Most of the previous work on fatty acid autoxidation has dealt with 

pure fatty acids. This work was undertaken to investigate the influence 

of fatty acids on each other during the formation of hydroperoxides. . 

Also, the effect of glycerides structure and the presence of nonsaponi-

fiables on the peroxides formed was checked. 
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EXPERIMENTAL INVESTIGATION 

Materials and Methods 

Soybean oil: Soybean oil was obtained from Anderson, Clayton 

and Company. 

Safflower oil: Safflower oil was obtained from Nutritional Bio-

chemicals Corporation. 

Corn oil; Corn oil was obtained locally. 

Castor oil; Castor oil was obtained from Fischer Scientific Com­

pany. 

Linseed oil; Raw linseed oil was obtained from Archer Daniels Mid­

land Company and refined with dilute alkali and activated carbon to re­

move impurities before use. 

All glassware was soaked in 10% ammonium hydroxide. 

Gas chromatography; Methyl esters were analyzed on a Beckman GC-5 

chromatograph equipped with flame ionization detector. A six foot 

stainless steel column with 15% EGSS-X on Chrom Sorb P (Applied Science, 

Inc.) at 180C was used. 

Methyl esters were prepared in methanol using 2% sulfuric acid as 

a catalyst, except where noted. 

Methyl Oleate; Methyl oleate was isolated from olive oil methyl 

esters by the urea fractionation procedure of Raghuveer (50). 

Methyl Linoleate; Methyl linoleate was prepared from safflower oil 

by urea fractionation. First 600 g of safflower oil fatty acids were 

dissolved in 2460 ml of methanol containing 953 g of urea and heated to 
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dissolve the urea. The solution was allowed to cool to room temperature 

and the urea adducts were removed by filtration. The filtrate was evap­

orated under reduced pressure until it solidified and this residue was 

dissolved in 2 N hydrochloric acid. The recovered fatty acids were 

esterified with methanol using 2% sulfuric acid as a catalyst. The pro­

duct was washed free of acid with 5% sodium carbonate and finally with 

distilled water. The methyl linoleate was analyzed by gas chromato­

graphy and was found to be greater than 95% pure. Another urea frac­

tionation was performed on these methyl esters with a ratio of urea: 

methanol: methyl esters of 1: 5: 1 respectively. The methyl esters re­

covered from the filtrate were found to be pure by gas chromatography. 

Methyl llnolenate: Methyl linolenate was prepared from linseed oil 

by urea fractionation (50). This yielded a product containing 75.7% 

linolenic, 20.9% linoleic and 3.4% oleic acid by gas chromatography. 

Methyl linolenate of high purity was prepared by the column chromato­

graphic procedure of Hammond and Lundberg (27) except that a column 5.5 

cm in diameter and 90 cm in length, filled to a height of 82 cm with a 

mixture of 80% silica gel 100 mesh (Mallinckrodt Chemical Company) and 

20% Celite 545 (Fisher Scientific Company), was used. 

Butylated methyl rlclnoleate: Methyl ricinoleate was prepared as 

follows: Mixed methyl esters were obtained from castor oil by refluxlng 

castor oil with methanol in the presence of sodium methoxide as a cata­

lyst. The mixed methyl esters were butylated following the acetylation 

procedure of the American Oil Chemists' Society (42). Eighty seven mill-

liters of butyric anhydride (Eastman Kodak) were used. The esters were 
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thoroughly washed with warm water and dried over anhydrous sodium sul­

fate. The butylated methyl ricinoleate was purified by a urea frac­

tionation scheme as follows: 10 g portions of methyl esters were dis­

solved in 170 ml of methanol containing 26 g urea. The mixture was 

cooled to room temperature with intermittent stirring during the first 

hour and kept at this temperature for 3 hr to let the urea complex 

crystallize. The urea complex was filtered and washed twice with 10 ml 

portions of methanol saturated with urea. Fraction 2 was obtained by 

adding 8 g of urea to the filtrate from fraction 1. The volume was 

maintained at 170 ml. The mixture was heated, stirred, cooled and fil­

tered as before. Fractions 3, 4, and 5 were obtained similarly. The 

butylated methyl ricinoleate was recovered from the final filtrate by 

acidifying with 1 N hydrochloric acid and extracting the solution with 

100 ml hexane. The solution was extracted a second time with 100 ml of 

diethyl ether and finally with a 100 ml of hexane. The combined ex­

tracts were then washed free of acid with distilled water and dried with 

sodium sulfate. The solvents were removed under reduced pressure in a 

rotary evaporator. The methyl esters were spotted on Silica Gel G thin-

layer plates and developed in hexane and diethyl ether (80:20 ̂ /v). 

The plates were sprayed with 50% sulfuric acid saturated with potassium 

dichromate and then charred at 120C for 1 hr. The butylated methyl 

ricinoleate gave only one spot. 

The methyl ester mixtures were prepared using pure methyl esters 

and methyl esters of natural oils. The ratios were checked by gas 

chromatography and adjusted as necessary. A short Widmer column 
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(12 cm) was used to distill the methyl ester mixtures at pressures of 

less than 0.1 mm Immediately before oxidation. 

Natural oils were deodorized in an all-glass apparatus (57) before 

they were oxidized. 

Soybean oil and corn oil were randomized using 0.5% sodium meth-

oxide. The reaction mixture was stirred with a magnetic stirrer; the 

pressure was kept below 1 mm and the temperature was maintained at 60C. 

After randomization, the mixture was washed with 5% acetic acid (to 

destroy catalyst), a 5% sodium carbonate solution, and finally with dis­

tilled water. After drying over sodium sulfate, the mixtures were 

deodorized (57). 

All methyl ester mixtures and oils were autoxidized in 50 g lots 

in 300 ml Erlenmeyer flasks without stirring in a 28C incubator. 

Samples were withdrawn periodically to determine the peroxide 

value (PV) by the method of Hamm et al. (26). When samples reached 

peroxide values of approximately 5, 10, 20, and 40, samples were with­

drawn and the peroxides were reduced to alcohols by the iodometric 

method recommended in the Official Methods of the American Oil Chemists' 

Society (43), at which time the peroxide values were confirmed. The 

methyl esters were extracted 3 times with 100 ml portions of chloroform, 

washed with distilled water and twice with 5% sodium bicarbonate. After 

drying over sodium sulfate, the solvent was removed under reduced pres­

sure. The hydroxymethy1 esters formed by the reduction from hydroper­

oxides were then butylated with butyric anhydride following the acety-

lation method of the American Oil Chemists' Society (44). After 1 hr. 
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the reaction mixture(was washed with warm water, cooled, and extracted 

3 times with 100 ml/portions of hexane. The methyl esters were washed 

with distilled water and dried over sodium sulfate. The solvent was 

evaporated under reduced pressure using a rotary evaporator. 

Urea fractionation procedure: 10 g of butyric anhydride-treated 

methyl esters were heated in 170 ml methanol containing 42 g of urea. 

The solution was cooled to room temperature during the first 2 hr with 

occasional stirring. The solution was then placed in a 21C incubator 

for 3 hr, after which the solution was placed in a 7C incubator for 

3 hr. This was done to allow complete crystallization at constant tem­

peratures . 

The solution was filtered through a cold Buchner funnel, and the 

crystals were washed twice with 10 ml portions of cold methanol saturated 

with urea. The filtrate was transferred to a separatory funnel and 100 

ml of 1 N hydrochloric acid was added. One hundred milliliters of 

hexane were used to extract the solution. A second extraction was made 

with 100 ml of diethyl ether and finally a second 100 ml portion of hex­

ane. The extracts were combined and washed free of acid with distilled 

water and dried over sodium sulfate. The solvents were removed under 

reduced pressure, and the methyl esters were transferred to a 10 ml 

volumetric flask and diluted to 10 ml with chloroform. 

In the case of the natural oils, after reduction by iodide, methyl 

esters were prepared using sodium methoxide as a catalyst rather than 

sulfuric acid as done by Raghuveer (50). This was done to prevent de­

hydration of the hydroxy fatty acids (59, 66). The methyl esters were 
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butylated and urea fractionated as previously described. 

Densitometer: A Model 525 Photovolt Densitometer and Model 43 

Photovolt Varicord Recorder (Photovolt Corp., New York, N.Y.) were used 

for densitometry. The log scale of the recorder was used. A specially 

designed stage (6) for 20 x 20 cm chromoplates was used. 

Thin-layer chromatography: Precoated Adsorbosil-5-plates (Applied 

Science Laboratories, Inc.) were used for all densitometer measurements. 

They were activated for % hr at lOOC before use. Locally prepared plates 

of Silica Gel G and Silica Gel G impregnated with 25% silver nitrate 

were used for preparative separations. These were air dried, then acti­

vated at lOOC for 1 hr, and the silver nitrate plates were stored in a 

dark drying chamber. 

Samples were applied as dilute solutions in chloroform along with 

the standards with a Hamilton microsyringe or, for preparative separa­

tions, with a streak applicator (Applied Science Laboratories, Inc.). 

The development was done in closed tanks lined with solvent soaked fil­

ter paper. After development, the spots or bands were located by 

spraying with 2', 7' dichlorofluorscein or by charring with 50% sulfuric 

acid saturated with potassium dichrornate. In case of densitometry analy­

ses, plates were charred for 1 hr at 120C. A linear relationship was 

obtained between peak area and sample size when there was less than 

30.0 X 10"^ mg of material. The samples were applied to fall below this 

value. The standard was applied in 4 different concentrations, along 

with the samples to be analyzed. Both butylated methyl ricinoleate and 

methyl ricinoleate were used as standards. 
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For the butylated methyl esters both the Adsorbosil-5 and Silica 

Gel G plates were developed in hexane: diethyl ether (85:15 ̂ /v). 

As the silver nitrate plates could not separate the butoxy methyl 

esters of oleate and linoleate, the esters were debutylated in approx­

imately 1 ml of methanol using several drops of 1 M sodium methoxide 

as a catalyst. The mixture was heated on a steam bath for 5 min, after 

which several drops of acetic acid and 1 ml of water were added. The 

esters were extracted with 2 ml of hexane, then with 2 ml of diethyl 

ether and again with 2 ml of hexane. The extracts were combined and 

washed with water. They were dried over sodium sulfate and the solvents 

were partially evaporated under reduced pressure. The hydroxy methyl 

esters were then spotted on Silica Gel G impregnated with 25% silver 

nitrate and developed in hexane: diethyl ether (40:60 ̂ /v). 

The hydroxy methyl esters of each degree of unsaturation were 

quantatized as above, but the solvent system was hexane: diethyl ether 

(60:40 ̂ /v), and methyl ricinoleate was used as the standard. 
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RESULTS AND DISCUSSION 

Modification of the procedure: The key step, in the analysis of 

hydroperoxide types in fats at low levels of oxidation, is their con­

centration from the common long-chain fatty acids from whence they are 

produced. In an earlier study in this laboratory, Raghuveer (50) 

accomplished this by reducing the hydroperoxides to alcohols and con­

centrating them by urea fractionation. Raghuveer found he had to ace-

tylate the methyl esters of hydroxy fatty acids (such as methyl ricin-

oleate) to achieve satisfactory separation from the common long-chain 

fatty acid methyl esters. The procedure he devised involved several 

crystallizations and filtrations. I wanted a method with less handling 

of the sample to minimize losses and to reduce analysis, time. 

Because an acetyl side chain had helped separate hydroxy esters 

from common fatty esters, the use of longer side chains was explored. 

Methyl ricinoleate (castor oil) was used as a model compound and it 

was acylated with acetic, propionic, and butyric anhydride. The urea 

fractionation procedure described in the METHODS section for the 

isolation of butylated methyl ricinoleate was used. This involved 

five urea crystallizations. In the urea fractionation of the castor oil, 

it was found that the acetylated methyl ricinoleate was complexed in 

fraction 2, where propylated methyl ricinoleate did not complex until 

fraction 4 and the butylated methyl ricinoleate until fraction 5. This 

indicated that more rigorous conditions of urea fractionation could be 

performed on the butylated methyl ricinoleate, before it would form an 
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adduct. A longer side chain could modify the methyl ricinoleate enough 

to form an adduct with urea (65,68). 

Instead of the time consuming repeated crystallizations at one 

temperature with increasing urea concentration as practiced by Raghuveer 

(50), the procedure of crystallization at decreasing temperatures de­

scribed in the METHODS section was developed. The best results were 

obtained by cooling the sample at room temperature for 2 hr, followed 

by 3 hr in a 21G incubator and 3 hr in a 7C incubator. For example, 

when 60 mg of butylated methyl ricinoleate was added to corn oil methyl 

esters and the urea fractionation was performed in this way, quantita­

tive recovery of the butylated methyl ricinoleate was attained. Only 

about 100-150 mg of other materials were present as shown by thin-layer 

chromatography. Cooling to lower temperatures did not remove any more 

of the unoxidized esters, and with the addition of more urea, small 

amounts of butylated methyl ricinoleate were included in the adducts. 

When the reduction (43) and concentration procedures were tried 

on oxidized methyl esters, another spot was found near the butylated 

methyl esters on the thin-layer chromatogram. Infrared spectroscopy 

and mass spectrometry, showed the second spot to be acetoxy methyl 

esters. During the peroxide reduction, the fat was dissolved in acetic 

acid/chloroform (43). Evidently, residual acetic acid was being carried 

through the procedure and was competing with the butyric anhydride in 

the butylation reaction. The chloroform extracts were washed with 5% 

sodium bicarbonate to remove the acetic acid. After this, the procedure 

gave only one spot corresponding to butoxy methyl esters (Spot B, Figure 1) 
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Figure 1. Thin-layer chromatogram used for quantitation of butoxy / 
methyl esters. 

A. Residual unoxidized methyl esters. 

B. Butoxy methyl esters. 

C. Mixed butyric-fatty acid anhydride. 

D. Unknown. 
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by thin-layer chromatography. 

Figure 1 shows a typical chromatogram used for quantitation of the 

butoxy methyl esters. Spot A is the residual unoxidized methyl esters 

not removed by the urea procedure. Spot C is probably a mixed anhydride 

of butyric and a fatty acid. When this spot is removed from the plate 

and transesterified with methanol and sodium methoxide, the product 

travels with the normal methyl esters (Spot A) on rechromatography. It 

normally is present in about TU of the amount of the butoxy methyl 

esters, but its relative amount is increased by using a larger excess 

of butyric anhydride. It corresponds to the "other oxidized material" 

reported by Raghuveer. Spot D was equal to about 5% of the butoxy ester. 

It might be polymers or oxidation products other than hydroperoxides. 

Raghuveer (50) was able to separate acetoxy methyl esters by degree 

of unsaturation by using silver ion thin-layer chromatography. This 

technique would not separate the butoxy methyl esters produced from 

oleate and linoleate. The only way to separate these compounds was to 

remove the butyl group and to separate the hydroxy-monoene and hydroxy-

diene by silver ion thin-layer chromatography. Figure 2 shows a silver 

ion thin-layer chromatogram. The separation of hydroxy-monoene and 

hydroxy-diene was adequate by this procedure. 

Saturated fatty acids: The first experiment was designed to see 

if saturated methyl esters influenced the amounts of monoene and diene 

peroxides formed when corn oil methyl esters were oxidized. The results 

of this experiment are given in Table 1. 

The hydroxy esters traveled with either the hydroxy-monoene 
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Figure 2. Thin-layer chromâtograph of hydroxy methyl esters on silver 
nitrate-Silica Gel G. 

A. 1. trans hydroxy-monoene. 
2. cis hydroxy-monoene. 

B. hydroxy-diene. 

C. hydroxy-triene. 

D. methyl ricinoleate. 
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Table 1. TLC analysis of the effect of saturated methyl esters on the formation of peroxide types 

Sample L Composition Sample H 

6.90% PaImitate 22.35% 
0.00% Stearate 6.30% 

46.55% Oleate 35.35% 
46.55% Linoleate 36.00% 

PV. -L Re-1 Monoene^ Diene^ Mono­ P.V.-H Re-1 Monoene^ Diene^ Mono­
cov- Peroxide Peroxide ene cov- Peroxide Peroxide ene 
ery % (mg) (mg) Diene ery % (mg) (mg) Diene 

1.605 1.62 
5. 01 98.2 3.65 1.40 3.00* 1.22 5.61 97.9 3.88 1.62 3.24 1.20 

3.25 c 1.84 3.95 
10. 43 104.0 8.90 3.25 6.60 1.34 12.00 109.0 t 8.20 10.14 4.00 7.95 1.28 

c 6.20^ 8.20 c 6.21 6.15 
26. 19 107.0 tl8.90 25.10* 7.80 16.00 1.57 21.65 95.4 tl2.25 18.46 6.21 12.36 1.49 

clO.65 17.05 clO.85 11.68 
44. 09 97.3 t26.40 37.05 18.40 34.45 1.08 37.03 99.9 t23.00 33.85 12.22 23.90 1.42 

Ave. 1.30 Ave. 1.35 
^Based on recovery of butylated methyl esters and the observed peroxide value using butylated 

methyl ricinoleate as a densitometric standard. 

^Hydroxy methyl esters recovered using methyl ricinoleate as a densitometric standard. 

^Gis monoene and trans monoene. 

^Total monoene. 

^Top figure is 13-hydroxy-diene, while lower figure is 9-hydroxy-diene. 

^Total diene. 
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obtained from oxidized methyl oleate or the hydroxy-diene obtained from 

oxidized methyl linoleate on silver ion thin-layer plates. No evidence 

was found for saturated peroxides. Brodnitz et al. (9) had suggested 

that in the presence of polyunsaturated fatty acids, saturated fatty 

acids might autoxidize and form peroxides. My results confirmed the 

findings of Michalski and Hammond (45), who did not find saturated fatty 

acid oxidation products when labelled stearic acid was oxidized with 

soybean oil. 

Two spots were found when the hydroxy-diene esters were rechromto-

graphed on Silica gel plates for quantitation (Figure 3). These are 

believed to correspond to the two isomeric hydroperoxides formed from 

linoleate (Figure 3). Graveland (22), using the same thin-layer system, 

found similar results. The Rg's I observed agreed with his. Graveland, 

using infrared and mass spectroscopy, identified the compounds. The 

higher spot (Rj 0.43) was 13-hydroxy-9 cis, 11 trans-octadecadienoate, 

and the lower spot (Rf 0.35) was 9-hydroxy-lO trans, 12 cis-octadecadie-

noate. The two isomers were found in approximately equal amounts con­

firming the findings of BergstrOm (4) and Khan et al. (33). The molar 

absorbance of the butoxy-diene was 26 X 10^ at 233 nm, which was in 

close agreement with the findings of Cannon et al. (10) and Privett 

et al. (47). Raghuveer (50) did not observe these two isomers using a 

similar thin-layer procedure, because resolution of the two isomers is 

not achieved using the acetoxy esters as he did. 

At higher peroxide values, a slow moving spot was found on silver 

ion thin-layer chromatography. Raghuveer (50) sometimes found this 
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Figure 3. Thin-layer chromatogtaph used for the quantitation of the 
hydroxy methyl esters. 

Â. methyl ricinoleate standards. 

B. hydroxy-monoene. 

C. 1. 13-hydroxy-diene 

2. 9-hydroxy-diene. 

D. hydroxy-triene. 
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product when methyl oleate was oxidized. He attributed the spot to 

cis-monoene-hydroperoxide. Others (35,36) have reported only the 

presence of trans double bonds in the hydroperoxides from methyl oleate 

and most of the oxidation product from methyl oleate is trans as shown 

by infrared spectroscopy. Because it is always produced in small amounts, 

there has never been enough of the slow moving product for spectroscopy. 

The amount of saturated fatty acid methyl esters had no observable 

effect on the formation of hydroxy-monoene and hydroxy-diene methyl 

esters. 

Nonsaponifiables: The effect of the nonsaponifiables on the 

formation of peroxide types was also examined. The nonsaponifiables 

were extracted from saponified corn oil and the fatty acids were 

converted to methyl esters which were then distilled before oxidation 

as described in the METHODS section. Methyl esters were also prepared 

from corn oil by transesterfication with a sodium methoxide catalyst. 

The esters were deodorized in all glass apparatus (57). The latter 

procedure does not remove or destroy the nonsaponifiables, but any 

hydroperoxides present are destroyed in the deodorization. Table 2 

gives the quantitative analyses of peroxides formed. 

The nonsaponifiables possibly had a small effect on the ratio of 

monoene/diene product, but if so, it is obscured by the experimental 

error. The only obvious difference was in the length of time it took 

the methyl esters to reach corresponding peroxide values. The methyl 

esters with the nonsaponifiables took over three times as long. This 

is because the nonsaponifiables include the tocopherol present in the 

corn oil. 
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Table 2. TLC analyses of the effect of nonsaponifiables on peroxide type formation 

Nonsaponifiables Removed Composition Nonsaponifiables Present 

13.847, 
1.47% 
24.44% 
60.23% 

Palmitate 
Stearate 
Oleate 
Linoleate 

11.55% 
1.35% 
25.25% 
61.93% 

P.V.-R Re-1 Monoene^ Diene^ Mono- P.V.-P Re-1 Monoene^ Diene^ Mono-
cov- Peroxide Peroxide ene cov- Peroxide Peroxide ene 
ery % (mg) (mg) Diene ery % (mg) (mg) Diene 

3.403 2.75 
6.45 99.1 2.06 3.89 7.29* 0.28 5.01 100.0 1.80 2.88 5.63 0.32 

7.41 8.18 
10.53 100.0 2.48 7.68 15.09 0.17 13.03 98.6 3.75 8.03 16.21 0.23 

16.95 9.95 
25.05 101.0 6.05 15.60 32.55 0.19 16.37 98.8 8.15 9.63 19.58 0.41 

22.00 
36.65 96.9 11.98 23.08 45.08 0.26 

Ave. 0.21 Ave. 0.30 

^Based on recovery of butylated methyl esters and the observed peroxide value using butylated 
methyl ricinoleate as a densitometric standard. 

2 
Hydroxy methyl esters recovered using methyl ricinoleate as a densitometric standard. 

^Top figure is 13-hydroxy-diene and lower figure is 9-hydroxy-diene. 

*Total diene. 
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Oxidation of oleate-linoleate mixtures: With the findings that 

saturated fatty esters and nonsaponifiables had little or no effect on 

peroxide formation, a series of oleate-linoleate mixtures were oxidized 

and the peroxides formed were analyzed. The results are given in 

Table 3. 

The table shows that the ratio of oleate-linoleate has no effect 

on the formation of the two hydroxy-diene isomers. They are essentially 

found in equal amounts at all concentrations. 

At oleate concentrations of 46% and higher, and peroxide values 

greater than 20, the product believed to indicate the cis monoene 

hydroperoxide was found. It formed approximately 30% of the total 

hydroxy-monoene present in three of the mixtures, but in the mixture 

with the highest amounts of oleate, it accounted for only 12% of the 

hydroxy-monoene. 

The results show that methyl oleate and methyl linoleate interact 

strongly when oxidized together. Oxygen uptake experiments on pure 

esters (24, 31) would predict a 1/10 ratio of hydroxy-monoene/hydro-

diene, and Howard and Ingold's (32) results would predict a ratio of 

1/23. 

The results have been plotted in Figure 4. The graph shows that 

the formation of the hydroxy-diene is approximately directly proportional 

to linoleate concentration in the original methyl ester mixture at con­

centrations above 50% linoleate, but at lower concentrations, there is 

a significant deviation, giving higher proportions of oxidized linoleate. 

In a binary mixture, there are four propagation reactions: 
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Table 3. TLG analysis of the formation of peroxide types in autoxldlzlng mixtures of oleate-
llnoleate 

Composition Days to Re-1 
O 

Monoene Diene^ Dlene in 
Original Methyl P.V. reach cov- Peroxide Peroxide Oxidized 
Ester Mixture P.V. ery % (mg) (mg) Product % 

.95^ 
2.45^ 18:1 = 91.23% 7.18 14 95.0 6.75 1.50 2.45^ 26.6 

2.50 
18:2 = 8.77% 12.31 21 100.0 -13.97 2.42 4.92 26.0 

c 3.92^ 5.05 
24.45 25 98.7 t25.00 28.9r 4.83 9.88 25.4 

c 7.05 7.85 
46.80 30 98.2 t53.10 60.15 8.15 16.00 21.0 

0.94 
16:0 = 2.32% 5.03 9 100.0 4.80 0.80 1.74 26.6 

1.76 
18:1 = 84.46% 10.50 14 87.7 11.65 1.81 3.57 23.5 

c 4.00 3.52 
18:2 = 17.20% 20.04 18 82.4 tl3.62 17.62 3.82 7.34 29.4 

clO.25 9.90 
42.96 23 101.0 t37.10 47.35 9.75 19.65 29.8 
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1.30 
16:0 1.95% 5.02 13 98.1 5.10 1.42 2.72 34.8 

2.80 
18:1 65.66% 10.40 18 98.4 10.55 2.75 5.55 34.5 

c 5.90 5.50 
18:2 32.48% 21.51 24 99.0 tl6.10 22.00 5.50 11.00 33.0 

clO.OO 10.60 
39.05 30 99.2 t30.90 40.90 10.50 21.10 35.4 

1.60 
16:0 6.90% 5.01 7 98.2 3.65 1.40 3.00 45.5 

3.25 
18:1 46.55% 10.43 12 103.9 8.90 3.35 6.60 42.6 

c 6.20 8.20 
18:2 46.55% 26.19 16 107.3 tl8.90 25.10 7.80 16.00 39.0 

c 9.65 18.05 
44.09 21 97.3 t25.40 35.05 18.40 36.45 51.0 

3.40 
16:0 13.84% 6.45 6 99.1 2.06 3.89 7.29 78.0 

7.41 
18:0 

= 
1.47% 10.53 11 100.0 2.48 7.68 15.09 82.8 

16.95 
18:1 24.44% 25.05 15 101.0 6.05 15.60 32.55 82.4 

18:2 60.23% 

^Based on recovery of butylated methyl esters and the observed peroxide value using 
butylated methyl ricinoleate as a densitometric standard. 

^Hydroxy methyl esters recovered using methyl ricinoleate as a densitometric standard. 

3cis monoene and trans monoene, 

^Total monoene. 

^Top figure is 13-hydroxy-diene, and lower figure is 9-hydroxy-diene. 

^Total diene. 
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Table 3 (Continued) 

Composition Days to •Re-^ Monoene^ Diene^ Diene in 
Original Methyl P.V. reach cov- Peroxide Peroxide Oxidized 
Ester Mixture P.V. ery % (mg) (mg) Product % 

2.55 
16:0 = 1.74% 4.27 3 97.1 2.50 

5.16 
5.05 100.0 

18:1 = 19.95% 9.21 5 96.1 3.01 4.89 
13.42 

10.05 77.0 

18:2 = 78.30% 24.18 7 91.2 7.58 13.80 
28.30 

27.22 78.2 

45.11 10 99.4 10.22 27.10 
2.95 

55.40 84.4 

16:0 = 3.01% 4.65 i h  102.0 0.81 3.24 
6.55 

6.19 88.4 

18:1 = 9.91% 10.75 4 96.9 1.95 7.10 13.65 87.5 

18:2 = 88.08% 
24.05 

38.33 7 96.4 5.81 24.05 48.10 89.2 
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Figure 4. Oxidation of linoleate at different ratios of linoleate/oleate concentrations. The 
dotted line indicates linoleate oxidation expected if no interactions occurred 
based on Kp's from Howard and Ingold (32). 
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RIOO* + R^H —> RIQOH + RJ. Kp" (1) 

o
 

o
 

+ R% —>R^OOH + R?- V (2) 

R^OO- + R^H —> R^OOH + Rl- (3) 

R^OO- + R% —» R^OOH + R? v 22 Kp (4) 

where r1 represents oleate, and r2 represents linoleate, and the Kp's 

are rate constants. Assuming the termination reactions are all approxi­

mately equal, the ratio of olefin disappearance and hydroperoxide 

production is given by (5): 

d(RlH) _ d(RlOOH) _ (R^-00-) Kpll(Rln) +.Kpl2(R2H) 

d(R%) d(R200H) (R^OO-) Kp^^CR H) + Kp^^(R^H) 

If the interconversion of peroxyl radicals (Reaction 2 and 3) proceeds 

much more quickly than chain initiation or termination, the radical 

concentrations (R^OO*) and (R^OO*) may be eliminated by noting that 

Kpl2(Rl00.)(R2H) = Kp2^(R2oO.)(R^H), hence: 

d(R%) d(R^OOH) r^CR^/R^H) + 1 

dCR^H) dCR^OOH) r2(R^H/RlH) + 1 

where r^ = Kp^VKp^^ and r2 = Kp^^/Kp^^. This equation indicates that 

the ratio of oleate oxidized to linoleate oxidized should be a function 

of the oleate to linoleate ratio, but not a function of the extent of 

oxidation. Table 3 shows this was true, in general, the most obvious 

exception being the mixture containing 78.3% linoleate at peroxide 

value 1.74. 

If "d(R%) is measured at several values of (R^H)/(R^H), the 

dCR^H) 

reactivity ratios rj and r^ can be found graphically (41). By this 
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method, was 1.3 and r2 was 0.84 using the mixtures with 50% or 

more linoleate. The mixtures with high oleate percentages give values 

r^ => 0.17 and r2 ̂ 1 (actually negative which is impossible). The 

reactivity coefficients show that the oleate perbxy radical (R^OO») 

attacks oleate slightly better than linoleate, and that the linoleate 

peroxy radical (R^OO-) attacks oleate slightly better than linoleate. 

This is surprising, because work on hydrocarbons has indicated that the 

rates of the propagation reaction are usually dominated by the ease of 

abstraction of hydrogen from RH rather than the structure of the attacking 

peroxy free radical. But, if this were true, r^ = 0.045 and X2 - 22 from 

the data of Howard and Ingold (32), and this obviously is not so. 

It would be interesting to carry out similar experiments with dilute 

solutions of fatty acids in solvents to see if the restraint of the 

aligned hydrocarbon chains in the liquid methyl esters somehow accounts 

for these surprising interaction effects. Howard and Ingold (32) 

apparently oxidized linoleate and linolenate in dilute solutions of 

chlorobenzene, while oleate was not. This might explain the large 

differences in Kp. 

Oxidation of mixtures of oleate, linoleate and linolenate: Ap­

proximately equal amounts of oleate and linoleate methyl esters were 

added to methyl linolenate to give varying concentrations of linolenate. 

These were distilled and oxidized as before (METHODS section). The 

results of the hydroperoxide analysis are given in Table 4. Figure 5 

shows the percentage of each individual ester in the total peroxides 

and the theoretical percentages assuming no interaction versus the 
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Table 4. Autoxidation products of mixtures of oleate, linoleate and linolenate methyl esters 

Composition Days to Re-1 2 
Monoene Oiene 2 Triene^ 

Original Methyl reach cov- Peroxide Peroxide Peroxide 
Ester Mixture P.V. erv % (me) (me) (me.)  

0.43^ 
18:1 = 17.33% 5.11 2 99.5 0.41 0.41 0.844 6.60 

1.20 
18:2 = 15.93% 14.97 3 99.5 1.30 1.15 2.35 19.31 

1.85 
18:3 = 66.73% 24.04 4 97.4 2.00 1.99 3.84 30.78 

7.50 
84.20 6 98.0 7.25 7.30 14.80 105.18 

0.60 
18:1 = 20.73% 6.61 2 97.4 0.58 0.60 1.20 8.50 

1.00 
18:2 = 20.58% 11.21 3% 99.5 1.03 0.99 1.99 14.20 

2.80 
18:3 = 58.65% 29.05 5 99.2 2.06 2.50 5.30 37.31 

5.85 
64.01 6 99.2 5.85 5.80 11.65 81.63 

0.35 
18:1 = 31.28% 5.01 3 98.7 0.54 0.43 0.78 6.41 

0.95 
18:2 = 29.23% 10.78 6 100.0 1.10 0.90 1.85 14.45 

1.55 
18:3 = 39.45% 19.04 10 100,0 2.13 1.68 3.23 24.10 
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1.00 
16:0 — 8.05% 4.61 8 97.8 1.91 1.05 

2.52 
2.05 3.00 

18:1 34.49% 9.68 12 99.1 4.09 2.45 
5.40 

4.97 6.01 

18:2 35.63% 21.75 17 97.5 9.90 5.30 
9.18 

10.70 13.05 

18:3 s 21.92% 36.75 21 98.1 16.80 9.20 
1.20 

18.38 22.19 

18:1 43.78% 4.96 6 98.6 2.09 1.10 
2.00 

2,30 2.45 

18:2 46.44% 9.03 9 100.0 5.52 2.10 
4.51 

4.10 4.23 

18:3 9.76% 19.42 15 88.8 9.50 4.82 
10.01 

9.33 10.00 

38.09 20 98.9 18.25 9.90 19.91 18.88 

T 

Based on recovery of butylated methyl esters and the observed peroxide value using 
butylated methyl ricinoleate as a densitometric standard. 

^Hydroxy methyl esters recovered using methyl ricinoleate as a densitometric standard. 

^Top figure is 13-hydroxy-diene and lower figure is 9-hydroxy-diene. 

^Total diene. 
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Figure 5. Oxidation of different concentrations of linolenate in approximately equal 
amounts of oleate and linoleate. The dotted lines indicate the theoretical 
amounts of individual ester if no interaction occurred based on Kp's from 
Howard and Ingold (32). 
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linolenate concentration. 

Again, approximately equal amounts of the 9 and 13 hydroxy-diene 

were found under all conditions. No evidence of cis monoene hydro­

peroxide was found but the oleate percentage never exceeded 44%. 

In the oxidation of a two compound mixture, there are four pro­

pagation steps; in a mixture with three compounds, there are nine 

propagation steps. A rate equation was derived; 

Let X, y, z = oleate, linoleate and linolenate, 

respectively 

X*, y', z' = oleate, linoleate and linolenate peroxy 

free radicals, respectively 

a, b, c, d, e, 
f, g, h, i = rate constants 

The propagation steps are given by: 

axx' , dxy' , gxz' 

byx' , eyy' , hyz' 

czx' , fzy' , izz' 

The disappearance of each olefin is given by: 

X = axx' + dxy' + gxz' (la) 

J y  = byx' + eyy' + hyz' (lb) 

J z  ~  czx' + fzy' + izz' (Ic) 

and since to have a steady state; 

byx' + czx' = dxy' + gxz' 
dxy' + fzy' = hyz' + byx' 

gxz* + hyz' = czx' + fzy' 

then; 

Vx = axx' + dxy' + gxz' = (ax + by + cz)x' (2a) 
Jy -  byx' + eyy' + hyz' = (dx + fz + ey)y' (2b) 
Jz = czx' + fzy' + izz' = (gx + hy + iz)z' (2c) 
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and for x*; 

^ dxy' + gx^ 

by + cz (3) 

From equations in group 2: 

*' = jx (4a) 

ax + by + cz 

y' = Jy 

dx + fz + ey (4b) 

z' = 2 

gx + hy + iz (4c) 

and by substitution in equation 3 values of equations in group 4; 

(by + cz) Jx = dx J V + Rx</ z 

ax + by + cz dx + fz + ey gx + hy + iz 

J z 
^ by + cz = dx ^ SxTT 
Jy ax + by + cz dx + fz + ey gx + hy + iz 

/ 1 \ 1 1 
)y I + l| = 1 + fz + ev + gfy 1 + hy + iz 

by + cz j dx gx 

, ^ 22L_' + 1 , Ê3L_ + 1 
tf/x = by + cz ^ ifz by + cz 

</y fz + ey ^ J "77 hy + iz ̂  ̂ 
dx gx 

1 1 
ÈZ +£z +1 ÈZ + JÇZ +1 

p/x _ ax ax J. Jz ax ax (s) 

J y  + 1  J y  J n  +  I s .  +  l '  
dx dx gx gx 

The equation is solved in the same way to get: 

1 1 
^ + f z + l  ^  +  f z  +  1  

dl- = ey ey + Vx ey ey (6) 

J z  M  +  i z + l  c / 2  a x  +  c z + i  
hy hy by by 
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, £2i + J5z+i . éï + +̂ i  ̂
J z = cz cz ^ J y cz ÇZ (7) 

J x  M + bZ + 1 </* ^ + 12. + 1 
iz iz £z £z 

By using the experimental data and calculating the ratios of the constants 

that best fit equation 5, the following values were found v/a = 3, 

f/d =1, h/g = 4 and i/g = 10, assuming &/b = 1.3 and ^/d = 0.85 as in 

the previous experiment. The values of the four ratios determined on 

the trinary mixture are subject to considerable error. It is also 

possible the values of the ratios are not the same for all ester ratios 

as was found with the binary mixtures. But taken at face value, they 

indicate that the oleate-peroxy radical attacked linolenate three times 

faster than oleate (^/a); the linoleate-peroxy radical attacked 

linolenate and oleate equally well (f/d); the linolenate-peroxy radical 

attacked linoleate four times faster than oleate (^/g); and the peroxy-

linolenate radical attacked linolenate ten times faster than oleate 

(Vg).  

That ^/g and Vg must be larger than the other ratios is obvious 

from Figure 5, for the percentage of linolenate oxidized rises sharply 

with linolenate concentration. The percentage of linoleate oxidized 

shows a modest increase compared with oleate as the proportion of 

linolenate in the ester mixture increases. 

The results indicate that there is something about the linolenic 

molecule that makes it more easily oxidized than oleate and linoleate. 

This may simply be the fact that it has two positions that may be 

attacked and that should have reactivities similar to the 
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single position (Cn) in linoleate. If the interaction rate équation 

constants took into account the concentrations in terms of active 

centers, the rate for linolenate might fall more into line with the 

others. It is also known that pure linolenate oxidizes about twice as 

fast as linoleate (24, 31). 

It is surprising from a theoretical standpoint that linoleate is 

more like oleate in its behaviour than linolenate, and this implies that 

ease of abstraction of hydrogen from the a-positions of the various 

fatty acids does not dominate the rate of oxidation. But these results 

make considerable sense from a practical standpoint. It has long been 

known that a low percentage of linolenic acid was quite detrimental 

to the flavor of an oil. The relatively rapid rate of its oxidation 

could help it dominate the flavor of oils containing it. Also 2-

pentylfuran, an oxidation product from linoleate, is believed to dominate 

the flavor of soybean oil, although the flavor instability of the oil 

is attributed to linolenic acid. The ability of linolenic acid to 

enhance the oxidation of linoleic may account for this paradox. 

Oxygen uptake compared with peroxide values: The conclusions we 

have drawn depend on the assumption that most of the oxygen taken up 

by the fat is in the form of hydroperoxides and that the high concentra­

tions of oleate peroxide found are not caused by its relative stability 

to destruction rather than its rate of production. Several researchers 

( 28, 39) have found most of the oxygen taken up by fats is in the form 

of peroxides in the temperature range used. 

To test this, measurements were conducted at 28C in a Warburg 



www.manaraa.com

48 

respirometer using 5 and 10 g samples in large flasks (170 ml) with 

shaking. The samples were equilibrated for a % hr before the manom­

eters wore closed. When the samples had attained previously selected 

levels of oxygen absorption (equal to peroxide values of 5, 10 and 20), 

they were immediately removed and the peroxide test (43) was performed. 

Table 5 contains the results of the experiment. 

Table 5. Oxygen uptake of a fatty acid methyl ester mixture 

Composition of Time Oxidized 

fatty acid to Re- Ole- LinoLeate ; 
methyl ester reach cov- ate^ Linoleate^ oxidized 

mixture pyl PV2 PV ery3 % (mg) (mg) product % 

4.85 
16:0 = 3.01% 6.23 7.12 12 97.4 0.95 4.80 9.65 91.0 

8.25 
18:1 = 9.91% 9.70 

! 
11.73 18 100.0 1.64 8.58 16.43 90.9 

18:2 = 88.08% 19.345 19.47 M » » W «• B a «• M V •« 

21.175 
15.50 

21.175 24.80 24 99.0 3.11 15.58 31.08 90.9 

^Peroxide value based on calculations of oxygen uptake. 
2 
Peroxide value by iodide reduction (43). 

^Based on recovery of butylated methyl esters using butylated 
methyl ricinoleate as a standard, and using the iodide reduction 

peroxide value as a basis for calculation. 

^Based on hydroxy methyl esters using methyl ricinoleate as a 
standard. 

^Due to limitation of oxygen in the flask two 5 g samples were used. 

When five gram samples were used so that sufficient oxygen was 

present to give the desired peroxide value, two of them were combined 

and an average value taken for calculations to give enou^ product for 

the thin-layer analysis. The difference in peroxide values between 

oxygen uptake and iodide reduction is probably due to formation of 
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peroxides during the period of equilibrium. The samples oxidized 

faster than the corresponding samples in Table 3. The reason for the 

faster rate might be due to the difference in lighting between the dark 

incubator and the laboratory lights over the Warburg apparatus. The 

oxygen taken up by the fat is essentially converted to hydroperoxides. 

There arc no obvious difforonces in the types of peroxides formed in 

the Warburg apparatus compared with the sample of similar composition 

run in the incubator. There is no evidence of extensive peroxide 

destruction under the conditions used. 

Triglyceride structure and oxidation: The final experiment was to 

see if triglyceride structure had an effect on peroxide formation. To 

do this several vegetable oils were deodorized (57) and soybean and corn 

oil were also randomized. In randomization the fatty acids are detached 

from their original position on glycerol, then reformed in a random 

manner. This alters the concentration at the 1, 2 and 3 positions of 

glycerol. The fatty acid composition of the oils is given in Table 6. 

Table 6. Fatty acid composition of methyl esters of oils by gas-
liquid chromatography by percent 

Randomized Randomized 
Fatty Safflower Linseed Soybean Soybean Corn Corn 
acids oil oil oil oil oil oil 

16:0 9.12 6.75 10.64 10.79 11.68 11.28 
18:0 3.19 1.86 ' 4.36 4.28 1.69 1.90 
18:1 12.52 18.37 24.29 24.28 24.53 24.88 
18:2 75.17 16.29 54.24 54.42 60.99 60.72 
18:3 56.73 6.82 6.21 1.35 1.19 
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peroxide analysis of the oils before oxidation showed all to contain 

negligible amounts of hydroxy acids. 

The results of autoxidation of the natural oils are given in Table 7. 

As can be seen by comparing Tables 3 and 7, the recoveries as butylated 

methyl esters are approximately 10% lower with triglycerides than with 

the pre-formed methyl esters. The methylation with sodium methoxide as 

a catalyst seems to interfere with or attack the hydroxy methyl esters. 

A sample of the safflower oil saponified and then methylated with 2% 

sulfuric acid as a catalyst, gave even lower recoveries (last row 

Table 7). Raghuveer (50) also found lower recoveries from soybean oil 

but not olive oil using 0.4% sulfuric acid as a catalyst compared with 

recoveries from methyl esters. Several groups (59, 66) have found that 

acid catalysts dehydrate hydroxy groups a to a double bond, but 

methylation with sodium methoxide is not supposed to dehydrate the 

double bond. I found dehydration when pure hydroxy-diene was refluxed 

with 2% methanolic hydrochloric acid. But with the safflower oil 

sample where small amounts (50-60 mg) of the hydroxy-acids were present 

in 10 g of fat, the dehydration was much less severe. Some preferential 

dehydration of the conjugated diene took place during the acid catalyzed 

formation of methyl esters from safflower oil. Eighty percent hydroxy-

diene was recovered by this method while in the sodium methoxide catalized 

transesterification , 87% hydroxy-diene was recovered. 

Raghuveer (50) used an acid catalyst because he saponified tri­

glycerides to remove nonsaponifiables. In my work, the nonsaponifiables 

were not removed as they did not interfere with the thin-layer analysis. 
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Table 7. TLC analysis of the effect of triglyceride structure on the 
formation of peroxide types 

Days to Re-^ Monoene^ Diene^ Triene^ 
Oil P.V. reach cov- Peroxide Peroxide Peroxide 

P.V. ery % (mg) (mg) (rag) 

1.70 
Corn Oil 4.05 15 89.7 2.25 1.60 3.30 

6.35 
9.12 26 87.2 9.21 6.50 12.85 

2.81 
Randomized 6.75 3 83.5 2.99 2.85 5.66 
Corn Oil 6.92 

16.10 5 88.8 7.48 6.99 13.99 0.53 

0.85 
Soybean 3.98 13 90.0 1.02 0.85 1.70 2.68 
Oil 1.40 

7.05 25 86.5 1.91 1.29 2.69 4.75 

2.50 
Randomized 7.89 2 84.7 1.78 2.60 5.10 2.95 
Soybean Oil 6.07 

18.15 4 88.3 4.93 6.00 12.07 7.23 

2.40 
Linseed Oil 5.91 1 89.7 0.85 2.12 4.62 2.83 

5.40 
15.01 3 86.2 2.10 5.00 10.40 6.75 

4.07 
Safflower 6.81 2 88.1 1.24 3.90 7.97 
Oil 7.60 

13.10 4 84.2 2.10 7.35 14.95 
5.90 

13.10^ 4 72.2 2.80 5.31 11.21 

^Based on recovery of butylated methyl esters and the observed per­

oxide value using butylated methyl ricinoleate as a densitometric 

standard. 

^Hydroxy methyl esters recovered using methyl ricinoleate as a 

densitometric standard. 

3 
Methyl esters prepared by using 2% sulfuric acid instead of 

sodium methoxide as a catalyst. 
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They do interfere with the analysis of Spot C, Figure 1, but since this 

material is now known to be an anhydride, its analysis is not important. 

It is difficult to remove nonsaponifiables and avoid the use of acid 

catalysts to form methyl esters. 

With corn oil the oxidized product contained 59.5% hydroxy-diene 

and when compared with the graph (Figure 4) for oleate-linoleate mixtures 

at 73% (the percentage of linoleate in the oleate-linoleate fraction of 

corn oil), the point falls well below the curve. No hydroxy-triene was 

found. In the randomized corn oil, there was 65.5% hydroxy-diene in the 

oxidized product. Within experimental error, this value falls on the 

curve (Figure 4) for mixtures of oleate-linoleate. Randomized oils 

should behave more like methyl ester mixtures than the nonrandomized 

oils. At a peroxide value of 16.10, hydroxy-triene was found in small 

amounts. The randomized corn oil oxidized much faster than corn oil. 

The faster rate of oxidation of randomized corn oil agreed with the 

findings of Raghuveer and Hammond (51). 

The thin-layer analysis of soybean oil and randomized soybean oil 

showed some surprising results. In the oxidized products of soybean 

oil, there was 18.9% hydroxy-monoene, 31.5% hydroxy-diene and 49.6% 

hydroxy-triene, while in randomized soybean oil there was 18.1% hydroxy-

monoene, 51.9% hydroxy-diene and 30.0% hydroxy-triene. The randomized 

soybean oil oxidized much faster than the soybean oil (51). 

Linseed oil had 10.4% hydroxy-monoene, 55.1% hydroxy-diene and 

35.5% hydroxy-triene in the oxidized product. The hydroxy-diene is 

present in much larger amounts than expected from the methyl ester 
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mixtures, while the hydroxy-triene is much lower than expected. 

Safflower oil with 13.5% hydroxy-monoene and 86.5% hydroxy-diene 

in the oxidized product would fall on the curve for methyl ester mixtures 

(Figure 4). 

These results show that fatty acids present in triglycerides often 

oxidize in different proportions than would be predicted from oxidation 

of the corresponding methyl ester mixtures. This result seems to be more 

related to the distribution of the acyl groups on the glycerol than to 

the restraint of the glycerol itself, because in both the instances of 

soybean and corn oil, randomization caused a shift in oxidation pattern 

to one closer to that predicted from methyl esters. This supports the 

earlier findings of Raghuveer and Hammond (51) that glyceride dis­

tribution can make the local effective concentrations of an acyl group 

different from that calculated from its concentration in the whole oil. 
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SUMMARY 

Mixtures of oleate and linoleate; oleate, linoleate and linolenate, 

and several vegetable oils were autoxidized in 50 g lots at 28C. Samples 

were withdrawn periodically to determine the peroxide value by the method 

of Hamm et al. (26). When the test showed peroxide values of approxi­

mately 5, 10, 20 and 40, samples were withdrawn from the methyl ester 

mixtures. The peroxides were reduced to alcohols by the iodometric 

method recommended in the official method of the American Oil Chemists' 

Society (43). The hydroxy acids were then butylated by butyric anhydride. 

After concentration by urea fractionation, the butylated reduced hydro­

peroxides were quantitatively analyzed by thin-layer chromatography. 

The recoveries of the butylated methyl esters varied from 93-102% based 

on butylated methyl ricinoleate as a standard. 

Saturated fatty esters and nonsaponifiables had little or no effect 

on the peroxide types formed. In a series of mixtures of oleate and 

linoleate, it was found that the oleate and linoleate did not oxidize 

in the ratios predicted by research (24, 31) on the pure individual 

methyl esters. This indicates extensive interaction between the oxidizing 

species. At linoleate concentrations greater than 50%, the linoleate 

oxidized in direct proportion to its concentration, at lower linoleate 

concentrations a slightly greater proportion of the linoleate oxidized. 

Mixtures of approximately equal amounts of oleate and linoleate 

with varying concentrations of linolenate were prepared. Again the 

methyl esters did not oxidize in the ratio predicted from pure methyl 
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esters (24, 31). An equation was derived to predict the interactions 

during oxidation and its constants were evaluated with the data. The 

linolenate was much more readily oxidized than linoleate and oleate, 

and it induced the linoleate to oxidize to a greater extent than found 

in the oleate and linoleate mixture. 

Approximately equal amounts of 9- and 13-hydroxy-dienoate were 

found under all conditions, indicating that the 9- and 13-hydroperoxide 

of linoleate were formed in equal amounts. Cis-hydroxy-monoene was 

found when mixtures containing high concentrations of oleate were 

oxidized to peroxide values greater than 20. 

The autoxidation of natural oils showed that glyceride structure 

also had an effect on peroxide types. Randomized soybean and corn oil 

when autoxidized formed peroxide types in approximately the proportions 

predicted by the mixtures of methyl esters, but quite different propor­

tions were found among some of the natural fats and oils. 
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